Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur Rev Med Pharmacol Sci ; 25(2): 1101-1108, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1082901

ABSTRACT

OBJECTIVE: The "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)" disease caused a challenging and threating pandemic (COVID-19) worldwide with a great loss to life and the global economy. SARS-CoV-2 mainly involves the respiratory system, however, with Magnetic Resonance Imaging (MRI), neurological and special senses clinical manifestations have been reported rarely. The present study aims to investigate the MRI findings, clinical manifestations of neurological and special senses involvement in SARS-CoV-2 patients. MATERIALS AND METHODS: In this study, 284 articles from the databases "Pub-Med, Web of Science-Clarivate Analytics, Embase and Google Scholar" were identified. The keywords, coronavirus, SARS-CoV-2, COVID-19 pandemic, MRI, brain, special senses, neurological involvement were entered into the search engines and the concerned documents were selected and reviewed. The descriptive information was recorded from the particular studies; finally, we included 48 publications. RESULTS: The common neurological manifestations in SARS-CoV-2 patients were headache, impaired consciousness, acute cerebrovascular disease, ataxia, tremors, meningitis, encephalitis, cerebral bleeding, subarachnoid hemorrhage, frontal lobe, temporal lobe and intracerebral hematoma, hemiparesis and seizures. However, common special senses manifestations in SARS-CoV-2 patients were olfactory, auditory and gustatory disorders including red eyes, painless monocular visual disturbance, anosmia, ageusia, dysgeusia, dysosmia and hypoacusis. Moreover, the MRI findings identified in SARS-CoV-2 patients were isolated oval-shaped lesion in the corpus callosum, bilateral basal ganglia hemorrhage, ischemic lesions involving the corpus callosum, basal ganglia, cerebellum and vasogenic edema extending to the cerebral peduncles, pons and ventricles. CONCLUSIONS: The neurologic manifestations of SARS-CoV-2 patients are highly variable. The SARS-COV-2 exerts its damaging effects on the nervous system and special senses by developing determinant numerous neurological and special senses' clinical manifestations. Physicians with the help of MRI must rule out the neurological and special senses manifestations among SARS-CoV-2 patients.


Subject(s)
Brain/diagnostic imaging , COVID-19/diagnostic imaging , COVID-19/epidemiology , Magnetic Resonance Imaging/trends , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/epidemiology , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies
2.
Eur Rev Med Pharmacol Sci ; 24(19): 10286-10292, 2020 10.
Article in English | MEDLINE | ID: covidwho-890964

ABSTRACT

OBJECTIVE: The wildfire allied environmental pollution is highly toxic and can cause significant wide-ranging damage to the regional environment, weather conditions, and it can facilitate the transmission of microorganisms and diseases. The present study aims to investigate the effect of wildfire allied pollutants, particulate matter (PM-2.5 µm), and carbon monoxide (CO) on the dynamics of daily cases and deaths due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in San Francisco, USA. MATERIALS AND METHODS: For this study, we selected San Francisco, one of the regions affected by the wildfires allied pollution in California, USA. The data on the COVID-19 pandemic in San Francisco, including daily new cases and new deaths were recorded from Worldometer Web. The daily environmental pollutants particulate matter (PM-2.5 µm) and carbon monoxide (CO) were recorded from the metrological web "BAAQMD". The daily cases, deaths, particulate matter (PM-2.5 µm) and carbon monoxide were documented from the date of the occurrence of the first case of (SARS-CoV-2) in San Francisco, CA, USA, from March 20, 2020 to Sept 16, 2020. RESULTS: The results revealed a significant positive correlation between the environmental pollutants particulate matter (PM2.5 µm) and the number of daily cases (r=0.203, p=0.007), cumulative cases (r=0.567, p<0.001) and cumulative deaths (r=0.562, p<0.001); whereas the PM2.5 µm and daily deaths had no relationship (r=-0.015, p=0.842). In addition, CO was also positively correlated with cumulative cases (r=0.423, p<0.001) and cumulative deaths (r=0.315, p<0.001), however, CO had no correlation with the number of daily cases (r=0.134, p=0.075) and daily deaths (r=0.030, p=0.693). In San Francisco, one micrometer (µg/m3) increase in PM2.5 caused an increase in the daily cases, cumulative cases and cumulative deaths of SARS-COV-2 by 0.5%, 0.9% and 0.6%, respectively. Moreover, with a 1 part per million (ppm) increase in carbon monoxide level, the daily number of cases, cumulative cases and cumulative deaths increased by 5%, 9.3% and 5.3%, respectively. On the other hand, CO and daily deaths had no significant relationship. CONCLUSIONS: The wildfire allied pollutants, particulate matter PM-2.5µm and CO have a positive association with an increased number of SARS-COV-2 daily cases, cumulative cases and cumulative deaths in San Francisco. The metrological, disaster management and health officials must implement the necessary policies and assist in planning to minimize the wildfire incidences, environmental pollution and COVID-19 pandemic both at regional and international levels.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Carbon Monoxide/adverse effects , Environmental Pollution/statistics & numerical data , Wildfires/mortality , Wildfires/statistics & numerical data , Atmosphere/chemistry , Databases, Factual/statistics & numerical data , Environmental Pollution/analysis , Female , Humans , Male , Pandemics/statistics & numerical data , Particulate Matter/analysis , SARS-CoV-2 , San Francisco/epidemiology
3.
Eur Rev Med Pharmacol Sci ; 24(18): 9753-9759, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-814896

ABSTRACT

OBJECTIVE: The weather-related conditions change the ecosystem and pose a threat to social, economic and environmental development. It creates unprecedented or unanticipated human health problems in various places or times of the year. Africa is the world's second largest and most populous continent and has relatively changeable weather conditions. The present study aims to investigate the impact of weather conditions, heat and humidity on the incidence and mortality of COVID-19 pandemic in various regions of Africa. MATERIALS AND METHODS: In this study, 16 highly populated countries from North, South, East, West, and Central African regions were selected. The data on COVID-19 pandemic including daily new cases and new deaths were recorded from World Health Organization. The daily temperature and humidity figures were obtained from the weather web "Time and Date". The daily cases, deaths, temperature and humidity were recorded from the date of appearance of first case of "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)" in the African region, from Feb 14 to August 2, 2020. RESULTS: In African countries, the daily basis mean temperature from Feb 14, 2020 to August 2, 2020 was 26.16±0.12°C, and humidity was 57.41±0.38%. The overall results revealed a significant inverse correlation between humidity and the number of cases (r= -0.192, p<0.001) and deaths (r= -0.213, p<0.001). Similarly, a significant inverse correlation was found between temperature and the number of cases (r= -0.25, p<0.001) and deaths (r=-0.18, p<0.001). Furthermore, the regression results showed that with 1% increase in humidity the number of cases and deaths was significantly reduced by 3.6% and 3.7% respectively. Congruently, with 1°C increase in temperature, the number of cases and deaths was also significantly reduced by 15.1% and 10.5%, respectively. CONCLUSIONS: Increase in relative humidity and temperature was associated with a decrease in the number of daily cases and deaths due to COVID-19 pandemic in various African countries. The study findings on weather events and COVID-19 pandemic have an impact at African regional levels to project the incidence and mortality trends with regional weather events which will enhance public health readiness and assist in planning to fight against this pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Hot Temperature/adverse effects , Humidity/adverse effects , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Weather , Africa/epidemiology , Betacoronavirus , COVID-19 , Humans , Incidence , SARS-CoV-2
4.
Eur Rev Med Pharmacol Sci ; 24(17): 9216-9225, 2020 09.
Article in English | MEDLINE | ID: covidwho-790185

ABSTRACT

OBJECTIVE: The weather allied conditions have an impact on air, water, soil, food, ecosystem, feelings, behaviors, and pattern of health and disease. The present study aims to investigate the impact of heat and humidity on the daily basis incidence and mortality due to COVID-19 pandemic in European countries. MATERIALS AND METHODS: We selected 10 European countries, Russia, United Kingdom, Spain, Italy, Germany, Turkey, France, Belgium, Netherlands and Belarus. This region has a relatively low temperature and high humidity, and has homogenous European ethnicity with almost similar socioeconomic culture and health care system. The data on COVID-19 pandemic including daily new cases and new deaths were recorded from World Health Organization (WHO). The information on daily temperature and humidity was obtained from world climate web "Time and Date". The daily cases, deaths, temperature and humidity were recorded from the date of appearance of first case of "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)" in the European region, from Jan 27, 2020 to July 17, 2020. RESULTS: In 10 European countries, (Russia, United Kingdom, Spain, Italy, Germany, Turkey, France, Belgium, Netherlands and Belarus), the daily basis mean temperature from Jan 27, 2020 to July 17, 2020 was 17.07±0.18°C, and humidity was 54.78±0.47%. The overall results revealed a significant inverse correlation between humidity and the number of cases (r= -0.134, p<0.001) and deaths (r= -0.126, p<0.001). Moreover, an increase in temperature was linked with an increase in the number of cases (r=0.062, p=0.013) and deaths (r=0.118, p<0.001). The regression analysis results further revealed that with an increase of 1% humidity the number of cases (ß = -15.90, p<0.001) and deaths (ß=-1.56, p<0.001) reduced significantly. Whereas, with an increase of 1°C in temperature the number of cases (ß = 20.65, p<0.001) and deaths (ß = 3.71, p<0.001) increased significantly. CONCLUSIONS: Increase in relative humidity was associated with a decrease in the number of daily cases and deaths, however, a rise in temperature was allied with an upsurge in the number of daily cases and daily deaths due to COVID-19 pandemic in European countries. The study findings on weather events and COVID-19 pandemic have an impact at European regional levels to project the incidence and mortality trends with regional weather events to enhance public health readiness and assist in planning to fight against this pandemic situation.


Subject(s)
Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Europe/epidemiology , Humans , Humidity , Incidence , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Regression Analysis , SARS-CoV-2 , Survival Rate , Temperature
5.
Eur Rev Med Pharmacol Sci ; 24(15): 8232-8238, 2020 08.
Article in English | MEDLINE | ID: covidwho-696260

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has caused a global public health crisis with social, psychological and long-lasting economical damages. Weather-related dynamics have an impact on the pattern of human health and disease. The present study aimed to investigate the impact of heat and humidity on daily basis incidence and mortality due to COVID-19 pandemic in ten of the world's hottest countries compared to ten of the coldest ones. MATERIALS AND METHODS: Worldwide, we selected 20 countries; 10 hottest countries with the highest temperatures and 10 coldest countries with the lowest temperature. The selection of the countries was based on the daily basis mean temperature from the date of appearance of the initial cases of COVID-19, Dec 29, 2019 to May 12, 2020. In the world's 10 hottest countries, the mean temperature was (26.31±1.51) and humidity (44.67±4.97). However, in the world's 10 coldest countries the mean temperature was (6.19±1.61) and humidity (57.26±2.35). The data on the global outbreak of COVID-19, daily new cases and deaths were recorded from World Health Organization, and daily information on temperature and humidity was obtained from metrological web "Time and Date". RESULTS: In countries with high temperatures and low humidity, the mean daily cases incidence were (407.12±24.33); cumulative cases (9094.34±708.29); and cumulative deaths (452.84±43.30) were significantly low compared to countries with low temperatures and high humidity: daily cases (1876.72±207.37); cumulative cases (44232.38±5875.11); and cumulative deaths (2008.29±310.13). Moreover, COVID-19 cases and deaths per million population were significantly low in countries with high temperatures (cases 711.23, and deaths 16.27) compared to countries with low temperatures (cases 1685.99; and deaths 86.40). Furthermore, in hottest countries, a 1% increase in humidity reduced number of cases and deaths by (ß = -5.40, p<0.001) and (ß = -0.187, p=0.004) respectively. A similar trend was seen with a 1°C increase in temperature, reducing the number of deaths by (ß = -1.35. p<0.001). CONCLUSIONS: The results revealed a significant decrease in incidence of daily cases and deaths in countries with high temperatures and low humidity (warmest countries), compared to those countries with low temperatures and high humidity (coldest countries). The findings could be of interest to the policymakers and the health officials on the epidemiological trends of COVID-19 pandemic and weather changes.


Subject(s)
Climate , Coronavirus Infections/epidemiology , Hot Temperature , Humidity , Pneumonia, Viral/epidemiology , Algeria/epidemiology , Austria/epidemiology , Betacoronavirus , COVID-19 , Canada/epidemiology , Coronavirus Infections/mortality , Estonia/epidemiology , Finland/epidemiology , Ghana/epidemiology , Humans , Incidence , India/epidemiology , Iran/epidemiology , Kazakhstan/epidemiology , Kuwait/epidemiology , Mexico/epidemiology , Mortality , Norway/epidemiology , Oman/epidemiology , Pakistan/epidemiology , Pandemics , Pneumonia, Viral/mortality , Regression Analysis , Republic of Belarus/epidemiology , Russia/epidemiology , SARS-CoV-2 , Saudi Arabia/epidemiology , Sweden/epidemiology , United Arab Emirates/epidemiology , United States/epidemiology
6.
Eur Rev Med Pharmacol Sci ; 24(13): 7524-7533, 2020 07.
Article in English | MEDLINE | ID: covidwho-676458

ABSTRACT

OBJECTIVE: Weather-related dynamics have an impact on the pattern of health and disease. The present study aimed to investigate the effect of temperature and humidity on the daily new cases and daily new deaths due to COVID-19 in Gulf Cooperation Council (GCC) countries in the Middle East. MATERIALS AND METHODS: We selected all the six GCC countries, including Saudi Arabia, United Arab Emirates, Bahrain, Kuwait, Qatar and Oman. This region has a relatively high temperature and humidity, and has homogenous Arab ethnicity with a similar socioeconomic culture. The data on the global outbreak of COVID-19, including daily new cases and deaths were recorded from World Health Organization. The information on daily temperature and humidity was obtained from world climate web "Time and Date". The daily basis, mean temperature and humidity were recorded from the date of appearance of first case of COVID-19 in the region, Jan 29, 2020 to May 15, 2020. We also evaluated the growth factor, "a ratio by which a quantity multiplies itself over time; it equals daily cases divided by cases on the previous day". RESULTS: In GCC countries, the daily basis mean temperature from Jan 29, 2020 to May 15, 2020 was 29.20±0.30°C and humidity was 37.95±4.40%. The results revealed that there was a negative correlation and decrease in the number of daily cases and deaths from COVID-19 with increase in humidity in Oman, Kuwait, Qatar, Bahrain, United Arab Emirates and Saudi Arabia. The correlation coefficient between temperature with daily cases shows that an increase in temperature was associated with an increase in daily cases and deaths due to COVID-19, however, the temperature is still gradually rising in the region. The growth factor result for daily cases was 1.09±0.00 and daily deaths was 1.07±0.03 for COVID-19, and shows declining trends in GCC region. CONCLUSIONS: An increase in relative humidity was associated with a decrease in the number of daily cases and deaths due to COVID-19 in GCC countries. The daily growth factor for patients and deaths shows a declining trend. However, the climate is swiftly changing in the region; further studies may be conducted during the peak of summer season. The findings have outcomes for policymakers and health officials about the impact of temperature and humidity on epidemiological trends of daily new cases and deaths due to COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Humidity , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Temperature , Bahrain/epidemiology , COVID-19 , Humans , Kuwait/epidemiology , Middle East/epidemiology , Oman/epidemiology , Pandemics , Qatar/epidemiology , SARS-CoV-2 , Saudi Arabia/epidemiology , United Arab Emirates/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL